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ABSTRACT

Code-switching text-to-speech (TTS) aims to enable a system
to speak two languages with a single voice and in the same
utterance. In this paper, we propose to incorporate cross-
lingual word embedding into an end-to-end TTS system, to
improve the voice rendering. The cross-lingual word em-
bedding, generated from a pre-trained cross-lingual language
model, is able to encode words of two languages in the same
embedding space, therefore, allows words across languages
to share each other’s contextual information, which is useful
for the voice rendering of code-switching content. To investi-
gate the effectiveness of this idea, we conduct studies on two
multi-speaker monolingual corpora, namely, THCHS30 Man-
darin and LibriTTS English database. The evaluation results
show that our proposed framework outperforms the baseline
systems when presented with code-switching text input, and
achieves state-of-the-art performance.

Index Terms— text-to-speech, code-switching, cross-
lingual word embedding, end-to-end

1. INTRODUCTION

Code-switching (CS) refers to the process of switching the
linguistic code from one to another, which can occur between
two sentences (i.e. inter-sentential) or within one sentence
(i.e. intra-sentential). To be truly multilingual, a text-to-
speech (TTS) system is expected to be capable of speaking
such code-switching content as naturally as monolingual con-
tent. The prior work on code-switching speech synthesis can
be grouped into three categories: unit mapping, multilingual
synthesis, and polyglot synthesis.

The unit mapping approach substitutes linguistic units of
one language with the equivalences of another language by
using frame mapping [1], state mapping [2], and phone map-
ping [3, 4], etc. With the unit mapping method, the generated
voice may suffer from a strong foreign accent.

A multilingual synthesis system is built on multiple
language-dependent systems, which shares the common unit
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selection module [5], or multilingual synthesizer [6] across
languages. Although such method works well for inter-
sentential CS content, it doesn’t maintain the same voice
identity across languages unless language-dependent systems
are built on a voice database recorded by the same speaker.

Polyglot TTS systems are capable of synthesizing speech
of different languages with the same speaker’s voice [7],
where one builds a multilingual single speaker diphone
speech unit inventory using a phoneset combination approach.
In [8], a polyglot average voice is trained with multi-speaker
monolingual speech corpora, which can then be adapted to
any speaker’s voice in one of the training languages. The
adapted voice retains the voice identity across different lan-
guages. Voice conversion techniques can be also adopted for
controlling speaker’s voice identity [9].

It is noted that end-to-end (E2E) TTS architecture has
achieved the state-of-the-art speech quality, where the joint
training mechanism alleviates the need of complex linguis-
tic feature engineering. In the context of CS TTS [10], two
kinds of encoders are explored to handle alphabetic inputs
from different languages: shared multilingual encoder with
explicit language embedding and separated monolingual en-
coder, both of which produce more natural CS utterances than
Tacotron [11]. In [12], Xue et al. present a robust Mandarin-
English mixed-lingual TTS system with only monolingual
data by exploring speaker embedding and phonetic represen-
tations. High quality CS voice is also presented in [13]. In
short, E2E TTS represents one of the successful implementa-
tions for CS speech content.

A recent study on semi-supervised training [14] of Tacotron
benefits from textual and acoustic knowledge obtained from
large, publicly available text and speech corpora. In [15],
Hayashi et al. show that, the text embeddings computed from
a pre-trained BERT model, help TTS systems improve nat-
uralness of generated speech. Motivated by this finding, in
this paper, we propose to incorporate cross-lingual word em-
bedding, computed from a pre-trained cross-lingual language
model, into Tacotron2-based [16] E2E TTS architecture. As
the embedding vectors carry contextual knowledge of the
words, syntactically similar words of both languages are
able to share each other’s contextual information. It is ex-
pected that the cross-lingual word vector will help to generate
smoother voice when switching between different languages.
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2. CODE-SWITCHING TTS

The CS TTS system is expected to generate one homoge-
neous, high quality voice between two languages. However, it
is not easy to find a multilingual, CS speech corpus recorded
from a single speaker. As a compromise, the average voice
model (AVM) approach is adopted with multi-speaker mono-
lingual speech corpora. There are two common techniques to
control the speaker consistency of the AVM, that are speaker
embedding and speaker adaptation. Speaker embedding is
widely used in multi-speaker TTS [17, 18, 19] by character-
izing a speaker with a low dimensional vector. Speaker adap-
tation is achieved usually by re-training the AVM model with
target speaker data.

It has been shown [20] that the combination of these two
techniques outperforms the individual techniques. In this pa-
per, we perform adaptation on the entire AVM model that is
conditioned on the speaker embedding to benefit from the two
techniques. In practice, we use i-vector, extracted from a pre-
trained network, as the speaker embedding. Specifically, we
combine encoder output with speaker embedding by concate-
nating the two vectors, in a similar way as [21]. Next, we
introduce two CS TTS baseline systems, that represent state-
of-the-art performance. We benchmark the performance of
our proposed idea against the baselines in the experiments.

2.1. Tacotron2-based approach

We use Tacotron2 [16], as one of our baselines. It consists
of an encoder and an attention-based decoder. The phone se-
quences are taken as the model input. We use Griffin-Lim al-
gorithm [22] to reconstruct the waveform instead of WaveNet
vocoder [23], for rapid turn-around, as shown in Fig. 1.

The encoder generates text representations from the in-
put sequence. The phone embedding is taken by three convo-
lutional layers, followed by a bi-directional long short-term
memory (BLSTM). The encoder output will be attended by
decoder at each decoder time step via a location sensitive at-
tention network, to compute a fixed-length context vector.

The decoder is an autoregressive recurrent neural net-
work, predicting mel spectrograms from encoder output. It is
composed of a two layer pre-net, two uni-directional LSTMs,
a linear projection layer and a five convolutional layer post-
net with residual connection. We use CBHG post-prossing
net, presented in [11], to predict linear-scale spectrogram
from generated mel-scale spectrogram. Additionally, we
implement the guided-attention loss [24], leading to faster
alignment results and lower training loss.

2.2. Residual encoder

In [12], Xue et al. presented a residual encoder structure, as
shown in Fig. 2. It is a revised version of the encoder in Fig. 1
by adding the encoder input directly into encoder output. The
rest of the network is the same as that in Fig. 1.

Fig. 1. The Tacotron2-based system with Grifflin-Lim wave-
form reconstruction.

Fig. 2. The architecture of residual encoder

We expect that more phoneme information is retained
through the residual encoder, thus, having a direct impact
on the whole attention mechanism. As this structure helps
generate more natural mixed-lingual speech [12], we adopt it
as the second competitive baseline.

3. CODE-SWITCHING TTS WITH CROSS-LINGUAL
LANGUAGE MODEL

In [15], it was shown that Tacotron2-based TTS model ben-
efits from pre-trained BERT text embeddings in monolingual
case. The text embedding provides the useful information that
represents segmental information of speech, such as seman-
tics group of the phrase. Therefore, such additional textual
knowledge help improve the naturalness of the speech ren-
dering.

Next, we extend the above idea to the CS TTS system by
introducing cross-lingual language model.

3.1. Cross-lingual language model

A language model predicts the next word based on the previ-
ous context, while a word token is represented with an em-
bedding. Embeddings derived from fastText [25] encodes
the monolingual syntactic and contextual information, while
VecMap [26] is able to take in two monolingual embeddings,
X,Z, and projects them into a common embedding space, to
establish the cross-lingual correspondence. X,Z are mapped
according to the mapping functions WX ,WZ and a learned
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dictionary D that is based on cosine distance of the two em-
bedding space. The mapping function are derived to optimize
the following equation,

WX ,WZ = arg max
WX ,WZ

∑
i

∑
j

Dij((XiWX) · (ZjWZ))

We use this embedding to initialize our cross-lingual language
model (CLLM) as in [27, 28]. To take care of the domain
mismatch, CLLM is trained with the synthetically generated
CS corpus to fine-tune the common embedding space [29].

The synthetic CS corpus is augmented using a sentence-
level parallel corpus [30] according to the Matrix Frame Lan-
guage theory [31] whereby the two language will mix in a
way that preserves the syntactic structure of the dominant lan-
guage. The parallel corpus is firstly word-aligned and sub-
sequently phrase-aligned based on the phrase table of com-
monly occurring phrases. The synthetic CS corpus is sampled
from the phrase-aligned text based on a switching probability.

3.2. Encoder with cross-lingual word embedding

The baseline systems, in Section 2, are trained with the
parallel monolingual < text, audio > pairs, that doesn’t
provide code-switching knowledge. Similar to [15] where
word embedding is used for TTS, we propose to incorpo-
rate cross-lingual word embedding (CLWE) into our residual
encoder system. We hypothesize that the phonotactic and
prosodic transition between words across languages should
follow those within the same language. CLWE allows the
corresponding words across two languages to share each
other’s contextual information, which allows us to implement
the idea and validate the hypothesize.

In our work, we augment the encoder network with pre-
trained CLWE, since encoder is used to extract text sequential
feature representations from the input sequence. As shown in
[12], the encoder output has a greater impact on waveform
generation than encoder input. Therefore, to maximize the
effect of CLLM, we combine the residual encoder output with
CLWE by concatenating the embeddings as shown in Fig. 3.
Specifically, we concatenate a CLWE to all encoded phone
embedding that belong to the same word.

4. EXPERIMENTS

4.1. Experimental setup

We choose 40 Mandarin speakers from THCH30 [32] and
110 English speakers from LibriTTS [33] for average model
training. Each Mandarin speaker contributes 200 to 240 utter-
ances, totalling 9,054 utterances with 22 hours of audio.

Each English speaker contributes 50 to 150 utterances, to-
talling 8,962 utterances with 17 hours of audio. Another 300
Mandarin utterances, 300 English utterances and 300 CS ut-
terances are used during inference time. The matrix language
(main langauge) of CS sentences is Mandarin.

Fig. 3. The architecture of residual encoder with cross-lingual
word embedding.

All audios are down-sampled to 16kHz for average model
training. We use Mandarin front-end and grapheme-to-
phoneme to convert character sequences to phone sequences
for Mandarin and English, respectively. The model out-
puts, log-magnitude linear-scale spectrogram and 80-dim
mel-scale spectrogram, are computed from 50ms Hanning
window, 12.5ms frame shift and 1024-point Fourier trans-
form.

4.2. System implementation

We use Tacotron2 (T2) and residual encoder structure (RES-
ENC) as our baseline systems to investigate the cross-lingual
word embedding conditioned on residual encoder structure
system (CLWE). T2 system follows the implementations in
[16]. For the RES-ENC system, the character-level language
identity (LID), determined via orthography-based method, is
implemented to model the language difference. We simply
concatenate one-hot language vector obtained from LID to all
phoneme embedding of the same language.

The CLLM is a two layer LSTM with 650 hidden units
and a drop-out rate of 0.3 in-between layers, following the im-
plementation details as outlined in [29]. The 650-dimensional
CLWE is extracted from the embedding layer of the CLLM.

The i-vector based speaker embedding is obtained through
factor analysis [34]. An i-vector extractor of 400 speaker
factors is learned on Switchboard II Corpus to derive the i-
vectors [35]. Further, we apply linear discriminant analysis to
obtain a 150-dimensional i-vector for each speaker.

4.3. Subjective evaluation

To measure the speech quality, we conduct subjective evalua-
tion on MUItiple Stimuli with Hidden Reference and Anchor
(MUSHRA) experiments [36]. Ten listeners proficient in both
Mandarin and English are invited to each set of the listening
tests. We randomly choose twenty utterances from the 300
test utterances for each experiment group.

We implement three types of adaptation, using 200 Man-
darin (CH) utterances, 200 English (EN) utterances, 200
Mandarin and 100 English (MIX) utterances, for each of
the three systems, respectively. The same optimizing step
is taken for all adaptation experiments. All speech corpora
used for adaptation and inference are recorded from a unseen
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Fig. 4. MUSHRA results of CLWE system (i-VEC) and its
English (EN), Mandarin (CH), English and Mandarin (MIX)
adapted versions with CS utterance

multilingual single speaker1. We investigate the effectiveness
of the proposed CLWE system in two experiments. We first
compare the CLWE system performance with and without
adaptation; we then compare the system performance with
and without the cross-lingual word vectors.

4.3.1. CLWE system with and without adaptation

Firstly, we compare the performance of the proposed CLWE
system and its adapted versions with target speech for CS in-
put. The MUSHRA results in Fig. 4 show that adapting the
CLWE system with Mandarin speech corpora achieves bet-
ter performance than that with English database, since Man-
darin is the matrix language in the CS content. Furthermore,
our CLWE system adapted with only Mandarin speech data
can achieve almost the same performance as the one adapted
with both Mandarin and English speech corpora. Note that
all adapted CLWE systems outperform that without adapta-
tion, denoted as i-VEC system.

4.3.2. System performance with and without cross-lingual
word vector

We then explore the effectiveness of cross-lingual word vec-
tors on both CS and monolingual cases. To investigate the
effectiveness of cross-lingual word vectors on CS input, we
compare system performance of three systems in every dif-
ferent adaptation case. The MUSHRA results of synthesizing
CS speech in Fig. 5 demonstrate that the CLWE system con-
sistently outperforms RES-ENC, followed by T2. We note
that there is a small gap between CLWE and RES-ENC in
EN adapted case. As the matrix language in the CS content
is Mandarin, it is easy to understand that adaptation with En-
glish speech data doesn’t significantly improve system perfor-
mance.

To synthesize monolingual utterance, we generate Man-
darin speech (CHutt) from three systems in CH adaptation
case, and English speech (ENutt) from three systems in EN

1https://www.data-baker.com/us_en.html
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Fig. 5. MUSHRA results of T2, RES-ENC, CLWE sys-
tems for English (EN), Mandarin (CN), English and Mandarin
(MIX) adapted versions with CS utterance
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Fig. 6. MUSHRA results of T2, RES-ENC, CLWE systems
for English (EN) and Mandarin (CH) adapted versions with
monolingual utterance

adaptation case. As described in Fig. 6, the CLWE system
achieves better performance than baseline systems. The re-
sults suggest that cross-lingual word vector is effective not
only for CS content but also for monolingual input.

All the samples can be found in this demo link2.

5. CONCLUSION

In this paper, we propose to incorporate cross-lingual word
embedding into Tacotron2-based TTS system, to achieve bet-
ter performance on CS content. This embedding is generated
from a pre-trained CLLM, enriching cross-lingual contextual
knowledge. The conducted studies show that the cross-lingual
word embedding contributes to improve quality and smooth-
ness of generated voice when switching between two lan-
guages. Our evaluation results verify the effectiveness of the
cross-lingual word embedding not only on CS text input, but
also in monolingual cases. However, we find that the per-
formance of proposed CS TTS system without adaptation is
not good as expected. In the future, we are interested to fur-
ther understand the influence of speaker embedding on system
performance with CS input.

2https://xuehao-marker.github.io/icassp2020/
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